Лекция 7. Долгосрочные сети памяти

В этой главе мы обсудим более продвинутый вариант RNN, известный как долговременная краткосрочная память - Long Short Term Memory Networks (LSTM). LSTM широко используются во многих последовательных задачах (включая прогнозирование фондового рынка, языковое моделирование и машинный перевод) и доказали, что они работают лучше, чем другие последовательные модели (например, стандартные RNN), особенно с учетом доступности больших объемов данных. LSTM хорошо разработаны, чтобы избежать проблемы исчезающего градиента, который мы обсуждали в предыдущей главе. Основное практическое ограничение, налагаемое исчезающим градиентом, заключается в том, что он не позволяет модели изучать долгосрочные зависимости. Однако, избегая проблемы исчезающего градиента, LSTM имеют возможность хранить память дольше, чем обычные RNN (в течение сотен временных шагов). В отличие от тех RNN, которые поддерживают только одно скрытое состояние, LSTM имеют гораздо больше параметров, а также лучший контроль над тем, какую память хранить и что отбрасывать на данном этапе обучения. Например, RNN не могут решить, какую память хранить, а какую отбрасывать, поскольку скрытое состояние принудительно обновляется на каждом этапе обучения.
В частности, мы обсудим, что такое LSTM на очень высоком уровне и как функциональность LSTM позволяет им хранить долгосрочные зависимости. Затем мы перейдем к реальной математической структуре, управляющей LSTM, и обсудим пример, чтобы подчеркнуть, почему каждое вычисление имеет значение. Мы также сравним LSTM с ванильными RNN и увидим, что LSTM имеют гораздо более сложную архитектуру, которая позволяет им превосходить ванильные RNN в последовательных задачах.
Пересмотр проблемы исчезающего градиента и иллюстрирование ее на примере приведут нас к пониманию того, как LSTM решают эту проблему. После этого мы обсудим несколько методов, которые были введены для улучшения прогнозов, создаваемых стандартным LSTM (например, улучшение качества / разнообразия генерируемого текста в задаче генерации текста). Например, создание нескольких прогнозов одновременно, вместо того, чтобы прогнозировать их один за другим, может помочь улучшить качество генерируемых прогнозов. Мы также рассмотрим BiLSTM или двунаправленные LSTM, которые являются расширением стандартного LSTM, который обладает большими возможностями для захвата шаблонов, присутствующих в последовательности, чем стандартный LSTM. Наконец, мы обсудим два последних варианта LSTM. Сначала мы рассмотрим соединения глазка, которые вводят больше параметров и информации в ворота LSTM, позволяя LSTM работать лучше. Далее мы обсудим Gated Recurrent Units (GRU), которые набирают все большую популярность, поскольку имеют гораздо более простую структуру по сравнению с LSTM, а также не снижают производительность.
Понимание сетей с кратковременной памятью
В этом разделе мы сначала объясним, что происходит в ячейке LSTM. Мы увидим, что помимо состояний присутствует стробирующий механизм для управления информационным потоком внутри ячейки. Затем мы проработаем подробный пример и посмотрим, как каждый элемент и состояние помогают на различных этапах примера достичь желаемого поведения, в конечном итоге приводя к желаемому результату. Наконец, мы сравним LSTM со стандартным RNN, чтобы узнать, чем LSTM отличается от стандартного RNN.
Что такое LSTM?
LSTM можно рассматривать как более симпатичное семейство RNN. LSTM состоит в основном из пяти разных вещей:
• Cell state: Состояние ячейки - это внутреннее состояние ячейки (то есть памяти) ячейки LSTM.
• Hidden state: Скрытое состояние - это внешнее скрытое состояние, используемое для вычисления прогнозов.
• Input gate: Входные ворота - это определяет сколько текущего ввода считывается в состояние ячейки.
• Forget gate: Вентиль забывания - это определяет, какая часть предыдущего состояния ячейки отправляется в текущее состояние ячейки.
• Output gate: Выходной вентиль - определяет, какая часть состояния ячейки выводится в скрытое состояние

Мы можем связать RNN с сотовой архитектурой следующим образом. Ячейка выведет некоторое состояние, которое зависит (с нелинейной функцией активации) от предыдущего состояния ячейки и текущего входа. Однако в RNN состояние ячейки всегда изменяется с каждыми входящим данными. Это приводит к постоянному изменению состояния ячеек RNN. Такое поведение совершенно нежелательно для хранения долгосрочных зависимостей. LSTM могут решить, когда заменить, обновить или забыть информацию, хранящуюся в каждом нейроне в состоянии ячейки. Другими словами, LSTM оснащены механизмом, позволяющим сохранять состояние ячейки без изменений (при необходимости), что дает им возможность хранить долгосрочные зависимости. Это достигается введением стробирующего механизма. У LSTM есть ворота для каждой операции, которую должна выполнить ячейка. Ворота являются непрерывными (часто сигмоидальные функции) между 0 и 1, где 0 означает, что информация не проходит через шлюз, а 1 означает, что вся информация проходит через шлюз. LSTM использует один такой шлюз для каждого нейрона в клетке. Как объяснялось ранее, эти элементы управления управляют следующим:
• сколько текущего ввода записывается в состояние ячейки (входной шлюз);
• сколько информации забывается из предыдущего состояния ячейки (забывающий шлюз);
• сколько информации выводится в окончательное скрытое состояние из состояния ячейки (выходной шлюз)

Рисунок 7.1 иллюстрирует эту функциональность. Каждый элемент решает, какая часть различных данных (например, текущий ввод, предыдущее скрытое состояние или предыдущее состояние ячейки) поступает в состояния (то есть, в окончательное скрытое состояние или состояние ячейки). Толщина каждой линии показывает, сколько информации течет от / к этим воротам (в некотором гипотетическом сценарии). Например, на этом рисунке вы можете видеть, что входной вентиль допускает больше из текущего ввода, чем из предыдущего последнего скрытого состояния, где вентиль забывания позволяет больше из предыдущего конечного скрытого состояния, чем из текущего ввода:
[image:]
Рисунок 7.1: Абстрактное представление потока данных в LSTM
LSTM более подробно
Здесь мы пройдемся по фактическому механизму LSTM. Сначала мы кратко обсудим общий вид ячейки LSTM, а затем начнем обсуждение каждой из операций, происходящих в ячейке LSTM, а также пример генерации текста. Как мы уже говорили ранее, LSTM в основном состоит из следующих трех вентилей:
• Input gate: (Входной вентиль:) вентиль, который выводит значения между 0 (текущий вход не записывается в состояние ячейки) и 1 (текущий вход полностью записывается в состояние клетки). Активация сигмовидной формы используется для сжатия выходного сигнала между 0 и 1.
• Forget gate: (Ворота забывания:) сигмоидальный вентиль, который выводит значения между 0 (предыдущее состояние ячейки полностью забыто для вычисления текущего состояния ячейки) и 1 (предыдущее состояние ячейки полностью читается при расчете текущего состояния ячейки).
• Output gate: (Выходной вентиль:) сигмоидальный вентиль, который выводит значения между 0 (текущее состояние ячейки полностью отбрасывается для вычисления конечного состояния) и 1 (текущее состояние ячейки полностью используется при вычислении окончательного скрытого состояния).
Это может быть показано как на рисунке 7.2. Это очень высокоуровневая диаграмма, и некоторые детали были скрыты, чтобы избежать беспорядка. Мы представляем LSTM, как с циклами, так и без циклов, чтобы улучшить понимание. На рисунке справа изображен LSTM с петлями, а слева - тот же LSTM с развернутыми петлями, поэтому в модели нет петель:
[image:]
Рисунок 7.2: LSTM с рекуррентными ссылками (то есть циклами) (справа), LSTM с рекуррентными расширенными ссылками (слева)
Теперь, чтобы лучше понять LSTM, давайте рассмотрим пример. Мы обсудим действительные правила обновления и уравнения вместе с примером, чтобы лучше понять LSTM. Теперь давайте рассмотрим пример генерации текста, начиная со следующего предложения:
John gave Mary a puppy. (Джон дал Марии щенка.)
История, которую мы выводим, должна быть о Джоне, Мэри и щенке. Давайте предположим, что наш LSTM выведет два предложения после данного предложения:
John gave Mary a puppy (Джон дал Мэри щенка.) ____________________. _____________________.
Ниже приводится результат, полученный нашим LSTM:
John gave Mary a puppy (Джон дал Мэри щенка.) It barks very loudly (Он лает очень громко). They named it Luna (Они назвали его Луна).
Мы все еще далеки от вывода таких реалистичных фраз. Однако LSTM могут изучать отношения, такие как между существительными и местоимениями. Например, это касается щенка, а они - Джона и Мэри. Затем следует изучить связь между существительным / местоимением и глаголом. Например, для этого глагол должен иметь s в конце. Мы иллюстрируем эти отношения / зависимости на рисунке 7.3. Как мы видим, в этой фразе присутствуют как долгосрочные (например, Luna → puppy), так и краткосрочные (например, It → barks) зависимости. Сплошные стрелки показывают связи между существительными и местоимениями, а пунктирные стрелки показывают связи между существительными / местоимениями и глаголами:
[image:]
Рисунок 7.3: Предложения, данные и предсказанные LSTM с выделением различных взаимосвязей между словами.
Теперь давайте рассмотрим, как LSTM, используя свои различные операции, могут моделировать такие отношения и зависимости для вывода разумного текста с учетом начального предложения. Входной вентиль (it) принимает текущий вход (xt) и предыдущее конечное скрытое состояние (ht-1) в качестве входа и вычисляет его следующим образом:
it = σ(Wixxt + Wihht-1+ bi)
Входной вентиль можно понимать как вычисление, выполненное на скрытом уровне стандартного RNN с одним скрытым слоем с сигмоидальной активацией. Помните, что мы вычисляли скрытое состояние стандартного RNN следующим образом:
ht = tanh (Uxt + Wht-1)
Следовательно, его вычисление LSTM выглядит весьма аналогично вычислению ht стандартного RNN, за исключением изменения функции активации и добавления смещения. После вычисления значение 0 для него будет означать, что никакая информация с текущего входа не будет поступать в состояние ячейки, а значение 1 означает, что вся информация с текущего входа будет течь в состояние ячейки.
Затем другое значение (которое называется значением кандидата) вычисляется следующим образом:
c~t = tanh (Wcx xt + Wch ht-1 + bc),
которое позже добавляется для вычисления текущего состояния ячейки
Мы можем визуализировать эти расчеты на рисунке 7.4:
[image:]
Рисунок 7.4. Вычисление it и ct (выделено жирным шрифтом) в контексте всех вычислений (выделены серым цветом), которые выполняются в LSTM.
В нашем примере, в самом начале обучения, входные ворота должны быть сильно активированы. Первое слово, которое выводит LSTM - it. Также, чтобы сделать это, LSTM должен узнать, что щенок также упоминается как it. Давайте предположим, что в нашем LSTM есть пять нейронов для хранения состояния. Мы бы хотели, чтобы LSTM хранили информацию, относящуюся к щенку. Другая часть информации, которую мы бы хотели изучить c LSTM (в другом нейроне), заключается в том, что у глагола настоящего времени должно быть s в конце глагола, когда местоимение используется. Еще одна вещь, которую нужно знать LSTM, это то, что щенок лает громко. На рисунке 7.5 показано, как эти знания могут быть закодированы в состоянии ячейки LSTM. Каждый круг представляет отдельный нейрон (то есть скрытую единицу) состояния клетки:
[image:]
Рисунок 7.5: Знание, которое должно быть закодировано в состоянии ячейки для вывода первого предложения
С помощью этой информации мы можем вывести первое новое предложение:
John gave Mary a puppy. It barks very loudly.
(Джон дал Мэри щенка. Он лает очень громко.)
Затем, ворота забывания вычисляются следующим образом:
ft = σ(Wfxxt + Wfhht-1 + bf)
Ворота забывания делают следующее. Значение 0 для ворота забывания означает, что никакая информация из ct-1 не будет передана для вычисления ct, а значение 1 означает, что вся информация ct-1 будет распространяться в вычислении ct. Теперь мы увидим, как ворота забывания помогают предсказать следующее предложение:
They named it Luna. (Они назвали его Луна.)
Теперь, как вы видите, мы видим новые отношения между Джоном и Марией и it. Поэтому нам больше не нужна информация об этом и о том, как ведет себя глагол, так как субъекты – it, Джон и Мэри. Мы можем использовать строб «забытья» в сочетании с текущим субъектом, которым они названы, и соответствующим им глаголом, чтобы заменить информацию, хранящуюся в текущем субъекте и глаголе для текущих нейронов субъекта (см. Рисунок 7.6):
[image:]
Рисунок 7.6. Знание третьего нейрона слева (it → лает) заменяется новой информацией (they → названы).
В терминах значений весов мы проиллюстрируем это преобразование на рисунке 7.7. Мы не изменяем состояние нейрона, поддерживая отношения it → puppy, потому что puppy появляется как объект в последнем предложении. Это делается путем установки весов, соединяющих его → щенок от ct-1 до ct к 1. Затем мы заменим нейроны, поддерживающие текущую информацию о субъекте и текущем глаголе, новым субъектом и глаголом. Это достигается путем установки весов забывания ft [image:]для этого нейрона на 0. Затем мы установим весы, соединяющие текущий субъект и глагол с соответствующими нейронами состояния, равными 1. Мы можем думать о ct как о сущности, которая содержит информацию о том, какую новую информацию (например, новую информацию из текущего ввода xt) следует перевести в состояние ячейки:

Рисунок 7.7: Как вычисляется состояние ячейки ct с предыдущим состоянием ct-1 и значением кандидата c~t
Текущее состояние ячейки будет обновлено следующим образом:
ct = ftct-1+ itc~t
Другими словами, текущее состояние представляет собой комбинацию следующего:
• какую информацию забыть / запомнить из предыдущего состояния ячейки;
• какую информацию добавить / отбросить к текущему входу.

Далее на рисунке 7.8 мы выделим то, что мы рассчитали до сих пор. в отношении всех вычислений, которые происходят внутри LSTM:
[image:]
Рисунок 7.8: Рассчитанные вычисления, включая it, ft, ct и ct~
После изучения полного состояния все будет выглядеть как на рисунке 7.9:
[image:]
Рисунок 7.9: Полное состояние ячейки будет выглядеть после вывода обоих предложений.
Далее мы рассмотрим, как вычисляется конечное состояние ячейки LSTM (ht):
ot = σ(Woxxt + Wohht-1 + bo)
ht = ottanh(ct)
В нашем примере мы хотим вывести следующее предложение:
They named it Luna (они назвали его Luna).
Для этого нам не нужен второй по длине нейрон, чтобы вычислить это предложение, так как оно содержит информацию о том, как лает щенок, где что это предложение об имени щенка. Следовательно, мы можем игнорировать последний нейрон (содержащий отношения bark -> loud (лаять -> громко)) во время предсказаний последнего предложения. Это именно то, что делает сеть; она будет игнорировать ненужную память и извлекать связанную память только из состояния ячейки при вычислении окончательного вывода ячейки LSTM. Кроме того, на рисунке 7.10 мы иллюстрируем, как будет выглядеть ячейка LSTM с первого взгляда:
[image:]
Рисунок 7.10: Как выглядит полный LSTM
Здесь мы суммируем все уравнения, относящиеся к операциям, происходящим в ячейке LSTM.
it = σ(Wixxt + Wihht-1 + bi)
ft = σ(Wfxxt + Wfhht-1 + bf)
c~t = tanh(Wcxxt + Wchht-1 + bc)
ct = ftct-1 + itc~t
ot = σ(Woxxt + Wohht-1 + bo)
ht = ottanh(ct)

Теперь, в более широкой картине, для задачи последовательного обучения, мы можем развернуть ячейки LSTM с течением времени, чтобы показать, как они будут соединяться вместе, чтобы они получили предыдущее состояние ячейки для вычисления следующего состояния, как показано на рисунке 7.11:
[image:]
Рисунок 7.11. Как LSTM будут связаны с течением времени
Однако этого недостаточно для того, чтобы сделать что-то полезное. Как видите, даже несмотря на то, что мы можем создать хорошую цепочку LSTM, которые на самом деле способны моделировать последовательность, у нас все еще нет вывода или прогноза. Но, если мы хотим использовать то, чему на самом деле научился LSTM, нам нужен способ извлечь окончательный результат из LSTM. Поэтому мы закрепим слой softmax (с весами Ws и смещением bs) поверх LSTM. Окончательный результат получается с использованием следующего уравнения:
yt = softmax(Wsht + bs)
Теперь окончательная картина LSTM со слоем softmax выглядит как на рисунке 7.12:
[image:]
Рисунок 7.12: LSTM с выходным слоем softmax, связанным со временем
Чем LSTM отличаются от стандартных RNN
Теперь рассмотрим, как LSTM сравниваются со стандартными RNN. LSTM имеет более сложную структуру по сравнению со стандартным RNN. Одним из основных отличий является то, что LSTM имеет два разных состояния: состояние ячейки ct и окончательное скрытое состояние ht. Однако RNN имеет только одно скрытое состояние ht. Следующее основное отличие состоит в том, что, поскольку LSTM имеет три разных шлюза, LSTM имеет гораздо больший контроль над тем, как обрабатываются текущий вход и предыдущее состояние ячейки при вычислении окончательного скрытого состояния ht. Наличие двух разных состояний довольно выгодно. Благодаря этому механизму, даже когда состояние ячейки изменяется быстро, окончательное скрытое состояние все равно будет изменяться медленнее. Таким образом, в то время как состояние ячейки изучает как краткосрочные, так и долгосрочные зависимости, окончательное скрытое состояние может отражать либо только краткосрочные зависимости, либо только долгосрочные зависимости, либо и то и другое. Далее, механизм стробирования состоит из трех выходов: входных, забываемых и выходных вентилей:
• input gate (входные ворота) контролирует, сколько текущего ввода записывается в состояние ячейки;
• forget gate (забывающие ворота) контролирует, сколько из предыдущего состояния ячейки переносится в текущее состояние ячейки
• Наконец, output gate (выходные ворота) контролирует, сколько из состояния ячейки переходит в окончательное скрытое состояние
Совершенно очевидно, что это гораздо более принципиальный подход (особенно по сравнению со стандартными RNN), который позволяет лучше контролировать, какой вклад текущий вход и предыдущее состояние ячейки вносят в текущее состояние ячейки. Кроме того, выходные ворота дают лучший контроль над тем, насколько состояние ячейки способствует окончательному скрытому состоянию. На рисунке 7.13 мы сравниваем схематические диаграммы стандартного RNN и LSTM, чтобы подчеркнуть разницу в функциональности двух моделей. Таким образом, с целью поддержания двух разных состояний LSTM может изучать как краткосрочные, так и долгосрочные зависимости, что помогает решить проблему исчезающего градиента, который мы обсудим в следующем разделе.
[image:]
Рисунок. 7.13. Сравнение стандартной RNN и соты LSTM бок о бок.
Как LSTM решают проблему исчезающего градиента.
Как мы уже обсуждали ранее, хотя RNN теоретически надежны, на практике они страдают серьезным недостатком. То есть, когда используется Backpropagation Through Time -обратное распространение через время (BPTT), градиент быстро уменьшается, что позволяет нам распространять информацию только за несколько временных шагов. Следовательно, мы можем хранить информацию только за несколько временных шагов, таким образом, обладая лишь кратковременной памятью. Это, в свою очередь, ограничивает полезность RNN в реальных последовательных задачах.
Часто полезные и интересные последовательные задачи (такие как прогнозирование фондового рынка или языковое моделирование) требуют умения изучать и хранить долгосрочные зависимости. Подумайте о следующем примере как о предсказании следующего слова:
Джон талантливый ученик. Он учится в классе и играет в регби и крикет. Все остальные студенты завидуют ______.
Для нас это очень простая задача. Ответом будет Джон. Однако для RNN это сложная задача. Мы пытаемся предсказать ответ, который лежит в самом начале текста. Также для решения этой задачи нам нужен способ хранения долгосрочных зависимостей в состоянии RNN. Это именно тот тип задач, для решения которых предназначены LSTM. В главе 6 «Рекуррентные нейронные сети» мы обсуждали, как может исчезать / взрываться градиент без каких-либо нелинейных функций. Теперь мы увидим, что это все еще может произойти даже при наличии нелинейного преобразования. Для этого мы увидим, как производная ∂ht/∂ht-1 - для стандартной сети RNN и ∂ct /∂ct-k для сети LSTM изменяются со временем. Это ключевой термин, который вызывает исчезающий градиент, как мы узнали в предыдущей главе. Предположим, что скрытое состояние рассчитывается для стандартного RNN следующим образом:
ht = σ(Wxxt + Whht-1)
Чтобы упростить вычисления, мы можем игнорировать текущие входные данные и сосредоточиться на повторяющейся части, которая даст нам следующее уравнение:
ht = σ(Whht-1)
Если мы вычислим ∂ht/∂ht−k для предыдущих уравнений, мы получим следующее:
∂ht/∂ht−k = ∏k-1i=0Whσ(Wh ht-k+i)(1 – σ(Wh ht-k+i))
∂ht/∂ht−k = Wkh ∏k-1i=0σ(Wh ht-k+i)(1 – σ(Wh ht-k+i))
Теперь давайте посмотрим, что происходит, когда Wh ht-k+i << 0 или Wh ht-k+i >> 0 (что произойдет по мере продолжения обучения). В обоих случаях ∂ht/∂ht−k начнет приближаться к 0, что приведет к исчезающему градиенту. Даже, когда Wh ht-k+i = 0, где градиент максимален (0,25) для активации сигмоида, при умножении на множество временных шагов, общий градиент становится довольно малым. Кроме того, термин Wkh (возможно, из-за плохой инициализации) может также вызвать взрыв или исчезновение градиентов. Однако, по сравнению с исчезновением градиента из-за Wh ht-k+i << 0 или Wh ht-k+i >> 0, исчезновение / взрыв градиента, вызванный членом Wkh, относительно легко решить (с тщательной инициализацией весов и градиента срезки). Теперь давайте посмотрим на ячейку LSTM. Более конкретно, мы рассмотрим состояние ячейки, заданное следующим уравнением:
ct = ftct-1 + itc~t
Это продукт всех приложений для ворот забывания, происходящих в LSTM. Однако, если вы вычисляете ∂ct/∂ct−k аналогичным образом для LSTM (то есть игнорируете Wfx xt терминов и bf, поскольку они не повторяются), мы получаем следующее:
∂ct /∂ct-k = ∏k-1i=0 σ(Wfx ht-k+ i)
В этом случае, хотя градиент исчезнет, ​​если Wh ht−k + i << 0, с другой стороны, если Wh ht−k + i >> 0, производная будет уменьшаться гораздо медленнее, чем в стандартном RNN. Поэтому у нас есть одна альтернатива, где градиент не исчезнет. Кроме того, поскольку используется функция сжатия, градиенты не будут взрываться из-за того, что ∂ct /∂ct-k - велико (что, вероятно, случится во время взрыва градиента). Кроме того, когда Wh ht−k + i >> 0, мы получаем максимальный градиент, близкий к 1, что означает, что градиенты не будут быстро уменьшаться, как мы видели с RNN (когда градиент максимален). Наконец, в выводе нет члена, такого как Wkh. Однако производные сложнее для ∂ht/∂ht−k. Посмотрим, присутствуют ли такие члены при выводе ∂ht/∂ht−k. Если вы рассчитаете производные от этой функции, вы получите что-то в следующем виде:
∂ht/∂ht−k = ∂(ottanh(ct))/∂ht−k
Как только вы решите это, вы получите что-то вроде этой формы:
tanh()σ()[1 - σ()]Woh + σ()[1 – tanh2()]
{ct-1 σ()[1 - σ()]Wfh + σ()[1 - tanh2 ()]Wch + tanh()σ()[1 - σ()]Wih}
Мы не заботимся о содержимом внутри σ() или tanh(), потому что независимо от значения оно будет ограничено (0,1) или (-1,1). Если мы продолжим сокращать обозначения, заменив термины σ(), [1 - σ ()], tanh() и [1 – tanh2()] некоторыми общими обозначениями, такими как γ(), мы получаем что-то такого вида:
γ()Woh + γ()[ct-1γ()Wfh + γ()Wch + γ()Wih]
В качестве альтернативы мы получаем следующее (при условии, что внешняя γ() поглощается каждым γ() термом, присутствующим в квадратных скобках):
γ()Woh + ct-1γ()Wfh + γ()Wch + γ()Wih
Это даст следующее:
∂ht/∂ht−k ≈ ∏k-1i=0 γ()Woh + ct-1γ()Wfh + γ()Wch + γ()Wih
Это означает, что, хотя член ∂ht/∂ht−k безопасен от влияния любых членов Wkh, то ∂ht/∂ht−k - нет. Поэтому мы должны быть осторожны при инициализации весов LSTM, и мы должны также использовать градиентное ограничение.
Однако ht из LSTM, являющихся небезопасными от исчезающего градиента, не так важны, как для RNN. Потому что ct все еще может хранить долгосрочные зависимости без влияния исчезающего градиента, а ht может извлекать долгосрочные зависимости из ct, если это необходимо.
Улучшение LSTM
Как мы уже видели, изучая RNN, наличие прочной теоретической основы не всегда гарантирует, что они будут работать лучше на практике. Это связано с ограничениями в числовой точности компьютеров. Это также верно для LSTM. Наличие сложной конструкции - позволяющей лучше моделировать долгосрочные зависимости в данных - само по себе не означает, что LSTM будет выдавать совершенно реалистичные прогнозы. Поэтому было разработано множество расширений, чтобы помочь LSTM лучше работать на этапе прогнозирования. Здесь мы обсудим несколько таких улучшений:
· жадная выборка,
· поиск луча,
· использование векторов слов вместо представления слов в горячем кодированном виде и
· использование двунаправленных LSTM.
Жадная выборка
Если мы попытаемся всегда предсказать слово с наибольшей вероятностью, LSTM будет давать очень монотонные результаты. Например, он будет повторять слово много раз, прежде чем переключиться на другое слово. Один из способов обойти это - использовать жадную выборку, где мы выбираем n наилучших предсказанных членов и выборку из этого набора. Это помогает нарушить монотонный характер прогнозов. Давайте рассмотрим первое предложение предыдущего примера:
Джон подарил Мэри щенка.
Скажем, мы начинаем с первого слова и хотим предсказать следующие четыре слова: Джон ____ ____ _ _____. Если мы попытаемся выбрать образцы детерминистически, LSTM может вывести что-то вроде следующего:
Джон дал Мэри, дал Джон.
Однако, выбрав следующее слово из подмножества слов в словаре (наиболее вероятных), LSTM вынужден изменить прогноз и может вывести следующее:
Джон дал Мэри щенка.
В качестве альтернативы он выдаст следующий вывод:
Джон дал щенку щенка.
Однако, хотя жадная выборка помогает добавить больше вариаций к сгенерированному тексту, этот метод не гарантирует, что вывод всегда будет реалистичным, особенно при выводе более длинных последовательностей текста. Теперь мы увидим лучшую технику поиска, которая на самом деле смотрит вперед за несколько шагов до прогнозов.
Поиск луча
Поиск луча - это способ помочь с качеством прогнозов, сделанных LSTM. При этом прогнозы находят путем решения поисковой задачи. Важнейшая идея поиска луча состоит в том, чтобы производить b выходов (то есть yt, yt+1,…, yt+b) сразу вместо одного выхода yt. Здесь b известен как длина луча, а произведенные выходные сигналы b известны как луч. С технической точки зрения, мы выбираем луч, который имеет наибольшую совместную вероятность p(yt, yt+1,…, yt+b | xt) вместо выбора наибольшего вероятного p(yt|xt). Прежде чем делать прогноз, мы смотрим в будущее, что обычно приводит к лучшим результатам. Давайте разберемся с поиском луча в предыдущем примере:
John gave Mary a puppy (Джон дал Мэри щенка).
Скажем, мы предсказываем слово за словом. И изначально у нас есть следующее:
John ____ ____ _ _____.
Предположим гипотетически, что наша LSTM создает пример предложения с использованием поиска луча. Тогда вероятности для каждого слова могут выглядеть так, как мы видим на рисунке 7.13. Давайте предположим, что длина луча b = 2, и мы рассмотрим n = 3 лучших кандидатов на каждом этапе поиска. Дерево поиска будет выглядеть следующим образом:
[image:]
Рисунок 7.13: Пространство поиска луча для поиска b = 2 и n = 3.
Мы начнем со слова Джон и получим вероятности для всех слов в словаре. В нашем примере, n = 2, мы выбираем трех лучших кандидатов для следующего уровня дерева:
gave, Mary, and puppy (дал, Мэри и щенок).
(Обратите внимание, что это не могут быть кандидаты, найденные в реальном LSTM, и они используются только в качестве примера.) Затем из этих выбранных кандидатов вырастает следующий уровень дерева. И из этого мы выберем лучших трех кандидатов, и поиск будет повторяться, пока мы не достигнем глубины b в дереве.
Путь, который дает наибольшую совместную вероятность (то есть p(Mary, gave | John) = 0.09) выделен более жирными стрелками. Кроме того, это лучший механизм прогнозирования, поскольку он вернул бы более высокую вероятность или вознаграждение за фразу, которую Джон дал Мэри, чем Джон Мэри Джон или Джон Джон. Обратите внимание на то, что результаты, полученные и при жадной выборке, и при поиске луча, идентичны в нашем примере, который представляет собой простое предложение, содержащее пять слов. Однако это не тот случай, когда мы масштабируем это для вывода небольшого эссе. Тогда результаты, полученные при поиске луча, будут более реалистичными и грамматически правильными, чем результаты, полученные при жадной выборке.
Использование векторов слов
Другой популярный способ повышения производительности LSTM - это использование векторов слов вместо использования векторов с горячим кодированием в качестве входных данных для LSTM. Давайте разберемся в ценности этого метода на примере. Давайте предположим, что мы хотим генерировать текст, начиная с некоторого случайного слова. В нашем случае это будет следующим:
John ____ ____ _ _____. (Джон ____ ____ _ _____.)
Мы уже обучили нашу LSTM следующим предложениям:
John gave Mary a puppy. Mary has sent Bob a kitten.
(Джон дал Мэри щенка. Мэри отправила Бобу котенка.)
Давайте также предположим, что у нас есть векторы слов, как показано на рисунке 7.15:
[image:]
Рисунок 7.15: Предполагаемая топология векторов слов в двумерном пространстве
Вложения слова в набор этих слов в их числовой форме могут выглядеть следующим образом:
	kitten: [0.5, 0.3, 0.2]
puppy: [0.49, 0.31, 0.25]
gave: [0.1, 0.8, 0.9]

(котенок: [0,5, 0,3, 0,2]
щенок: [0,49, 0,31, 0,25]
дает: [0,1, 0,8, 0,9])

Видно, что distance(kitten, puppy) < distance(kitten, gave) - отдаленное расстояние от котенка до щенка. Однако, если мы используем горячее кодирование, они будут выглядеть следующим образом:
kitten: [1, 0, 0,…]
puppy: [0, 1, 0,…]
gave: [0, 0, 1,…]

Тогда distance(kitten, puppy) = distance(kitten, gave). Как мы уже видим, векторы с one-hot-encoded не фиксируют правильные отношения между словами и видят, что все слова одинаково удалены друг от друга. Тем не менее, векторы слов способны захватывать такие отношения и являются более подходящими в качестве признаков в LSTM. Используя векторы слов, LSTM научится лучше использовать отношения между словами. Например, с векторами слов LSTM узнает следующее:
Джон дал Мэри котенка.
Это довольно близко к следующему:
Джон дал Мэри щенка.
Кроме того, это очень отличается от следующего:
Джон дал Мэри дал.
Однако это не будет иметь место, если используются векторы с горячим кодированием.
Двунаправленные LSTM (BiLSTM)
Создание двунаправленных LSTM - это еще один способ улучшить качество прогнозов LSTM. Под этим мы подразумеваем обучение LSTM чтению данных от начала до конца и от конца до начала. До сих пор во время обучения LSTM мы создавали набор данных следующим образом. Рассмотрим следующие два предложения:
John gave Mary a _____. It barks very loudly.
(Джон дал Мэри _____. Он лает очень громко.)
Однако на данном этапе в одном из предложений отсутствуют данные, которые мы бы хотели, чтобы наш LSTM разумно заполнял. Если мы прочтем от начала до пропущенного слова, это будет выглядеть следующим образом:
Джон дал Мэри _____.
Это не дает достаточно информации о контексте пропущенного слова, чтобы правильно заполнить слово. Однако, если мы будем читать в обоих направлениях, это будет следующим:
Джон дал Мэри _____.
 _____. Он лает очень громко.
Если мы создали данные с этими двумя частями, достаточно предсказать, что пропущенное слово должно быть чем-то вроде собаки или щенка. Поэтому некоторые проблемы могут значительно выиграть от чтения данных с обеих сторон. Кроме того, это увеличивает объем данных, доступных для нейронной сети, и повышает ее производительность. Другое применение BiLSTM - нейронный машинный перевод, где мы переводим предложение исходного языка на целевой язык. Поскольку нет особого соответствия между переводом одного языка на другой, знание прошлого и будущего исходного языка может в значительной степени помочь лучше понять контекст, создавая тем самым лучшие переводы. В качестве примера рассмотрим задачу перевода филиппинского языка на английский. На филиппинском языке предложения обычно пишутся с глаголом-объектом-субъектом в таком порядке, тогда как на английском языке это субъект-глагол-объект. В этом задании на перевод будет очень полезно читать предложения вперед и назад, чтобы сделать хороший перевод. BiLSTM - это две отдельные сети LSTM. Одна сеть изучает данные от начала до конца, а другая сеть изучает данные от конца до начала. На рисунке 7.16 мы иллюстрируем архитектуру сети BiLSTM.
Обучение происходит в два этапа. Во-первых, сплошная сеть обучается с данными, созданными путем чтения текста от начала до конца. Эта сеть представляет собой обычную процедуру обучения, используемую для стандартных LSTM. Во-вторых, пунктирная сеть обучается с данными, сгенерированными путем чтения текста в обратном направлении. Затем на этапе вывода мы используем информацию как о сплошном, так и о пунктирном состояниях (объединяя оба состояния и создавая вектор), чтобы предсказать пропущенное слово:
[image:]
Рисунок 7.16: схематическое представление BiLSTM
Другие варианты LSTM
Хотя мы в основном сосредоточены на стандартной архитектуре LSTM, появилось много вариантов, которые либо упрощают сложную архитектуру, встречающуюся в стандартных LSTM, либо имеют лучшую производительность, либо и то и другое. Мы рассмотрим два варианта, которые вносят структурные модификации в сотовую архитектуру LSTM: соединение с дверным глазком и GRU.
Соединение с дверным глазком
Соединения с глазком позволяют выходам видеть не только текущий вход и предыдущее конечное скрытое состояние, но также и предыдущее состояние ячейки. Это увеличивает количество весов в ячейке LSTM. Наличие таких связей показало лучшие результаты. Уравнения будут выглядеть так:
it = σ(Wixxt + Wihht-1 + Wicct-1 + bi)
c~t = tanh(Wcxxt + Wchht-1 + bc)
ft = σ(Wfxxt + Wfhht-1 + Wfcct-1 + bf)
ct = ftct-1 + icc~t
ot = σ(Woxxt + Wohht-1 + Wocct-1 + b0)
ht = tanh(ct)

Давайте кратко рассмотрим, как это помогает LSTM работать лучше. Пока что выходы видят текущий вход и окончательное скрытое состояние, но не состояние ячейки. Однако в этой конфигурации, если выходной выход близок к нулю, даже когда состояние ячейки содержит важную информацию, необходимую для повышения производительности, окончательное скрытое состояние будет близко к нулю. Таким образом, выходы не будут учитывать скрытое состояние при расчете. Включение состояния ячейки непосредственно в уравнение вычисления элемента позволяет лучше контролировать состояние ячейки и может хорошо работать даже в ситуациях, когда выходной элемент близок к нулю.
Мы проиллюстрируем архитектуру LSTM с подключениями глазков на рисунке 7.17. Мы закрасили все существующие соединения в стандартном LSTM, а новые добавленные соединения показаны черным цветом:
[image:]
Рисунок 7.17: LSTM с соединениями с глазком (соединения с глазком показаны черным, а остальные соединения выделены серым цветом).

Шлюзовые рекуррентные блоки (GRU)
GRU можно рассматривать как упрощение стандартной архитектуры LSTM. Как мы уже видели, LSTM имеет три разных шлюза и два разных состояния. Это само по себе требует большого количества параметров даже для небольшого размера состояния. Поэтому ученые исследовали способы уменьшения количества параметров. GRU являются результатом одного такого усилия. Существует несколько основных различий в GRU по сравнению с LSTM. Во-первых, GRU объединяют два состояния: состояние ячейки и конечное скрытое состояние, в одном скрытом состоянии ht. Теперь, как побочный эффект этой простой модификации отсутствия двух разных состояний, мы можем избавиться от выходного шлюза. Помните, выходной шлюз просто решал, какая часть состояния ячейки считывается в окончательное скрытое состояние. Эта операция значительно уменьшает количество параметров в ячейке.
Затем, GRU вводят переопределение шлюза, который, когда он близок к 1, принимает полную информацию о предыдущем состоянии при вычислении текущего состояния. Кроме того, когда шлюз сброса близок к 0, он игнорирует предыдущее состояние при вычислении текущего состояния.
rt = σ(Wrx xt + Wrhht-1 + br)
h~t = tanh(Whxxt + Whh(rtht-1) +bh)
Затем GRU объединяют входные данные и шлюз забывания в один шлюз обновления. Стандарт LSTM имеет два входа, известные как входные и забывающие. Обновление ввода решает, какая часть текущего ввода считывается в состояние ячейки, а шлюз забывания определяет, какая часть предыдущего состояния ячейки считывается в текущее состояние ячейки. Математически это можно показать следующим образом:
it = σ(Witxt + Wihht-1 +bi)
ft = σ(Wfxxt + Wfhht-1 + bf)

GRU объединяют эти две операции в один шлюз, известный как шлюз обновления. Если шлюз обновления равен 0, то полная информация о состоянии предыдущего состояния ячейки помещается в текущее состояние ячейки, где ни один из текущих входных данных не считывается в это состояние. Если логический элемент обновления равен 1, то все текущие входные данные считываются в текущее состояние ячейки, и ни одно из предыдущего состояния ячейки не распространяется в текущее состояние ячейки. Другими словами, входной вентиль становится обратным логическому элементу забывания, то есть
zt = σ(Wzxxt + Wzhht-1 + bz)
ht = zth~t + (1 - zt)ht-1
Теперь давайте соберем все уравнения в одном месте. Расчеты GRU будут выглядеть так:
rt = σ(Wrxxt + Wrhht-1 + br)
h~t = tanh(Whxxt + Whh(rtht-1) + bh)
zt = σ(Wzxxt + Wzhht-1 + bz)
ht = zth~t + (1 – zt)ht-1

Это намного компактнее, чем LSTM. На рисунке 7.18 мы можем визуализировать ячейку GRU (слева) и ячейку LSTM (справа) рядом:
[image:]
Рисунок 7.18: Сравнение GRU (слева) и стандартного LSTM (справа).
Резюме
В этой главе вы узнали о сетях LSTM. Сначала мы обсудили, что такое LSTM и его архитектура высокого уровня. Мы также углубились в подробные вычисления, которые происходят в LSTM, и обсудили вычисления на примере. Мы видели, что LSTM состоит в основном из пяти разных вещей:
• Состояние ячейки: внутреннее состояние ячейки LSTM.
• Скрытое состояние: внешнее скрытое состояние, используемое для вычисления прогнозов.
• Входные ворота: это определяет, какая часть текущего ввода читается в состоянии ячейки
• Шлюз забывания: это определяет, какая часть предыдущего состояния ячейки отправляется в текущее состояние ячейки.
• Выходной шлюз: это определяет, какая часть состояния ячейки выводится в скрытое состояние. Наличие такой сложной структуры позволяет LSTM захватывать как краткосрочные, так и долгосрочные зависимости довольно хорошо.

Мы сравнили LSTM с обычными RNN и увидели, что LSTM действительно способны изучать долгосрочные зависимости как неотъемлемую часть их структуры, в то время как RNN могут не изучать долгосрочные зависимости. Затем мы обсудили, как LSTM решают исчезающий градиент с его сложной структурой. Затем мы обсудили несколько расширений, которые улучшают производительность LSTM. Во-первых, очень простая техника, которую мы назвали жадной выборкой, в которой вместо того, чтобы всегда выводить лучшего кандидата, мы случайным образом выбираем прогноз из набора лучших кандидатов. Мы видели, что это улучшает разнообразие сгенерированного текста. Далее мы рассмотрели более сложную технику поиска, называемую поиском луча. При этом вместо того, чтобы делать прогноз на один временной шаг в будущее, мы прогнозируем несколько временных шагов в будущее и выбираем кандидатов, которые дают наилучшую совместную вероятность. Другое улучшение заключалось в том, чтобы видеть, как векторы слов могут помочь улучшить качество предсказаний LSTM. Используя векторы слов, LSTM могут научиться более эффективно заменять семантически похожие слова во время предсказания (например, вместо вывода dog, LSTM может выводить cat), что приводит к большей реалистичности и правильности сгенерированного текста. Последним расширением, которое мы рассмотрели, были BiLSTM или двунаправленные LSTM. Популярное приложение BiLSTMs заполняет пропущенные слова во фразе. BiLSTM читают текст в обоих направлениях, от начала до конца и от конца до начала. Это дает больше контекста, поскольку мы смотрим на прошлое и будущее, прежде чем прогнозировать. Наконец, мы обсудили два варианта ванильных LSTM: глазок и GRU. Ванильный LSTM при расчете шлюзов смотрит только на текущий ввод и скрытое состояние. При подключении к глазку мы делаем расчеты шлюза зависимыми от всех: текущего входа, скрытого состояния и состояния ячейки. GRU - это гораздо более элегантный вариант ванильных LSTM, который упрощает LSTM без ущерба для производительности. GRU имеют только два шлюза и одно состояние, в то время как ванильные LSTM имеют три шлюза и два состояния. В следующей главе мы увидим все эти различные архитектуры в действии с реализациями каждой из них и увидим, насколько хорошо они работают в задачах генерации текста.

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image1.emf

image2.emf

image3.emf

image4.emf

image5.emf

